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Abstract: The reliability and scalability of large-scale based optical fiber sensor networks 

(AOFSN) are considered in this paper. The AOFSN network consists of three-level hierarchical 

sensor network architectures. The first two levels consist of active interrogation and remote 

nodes (RNs) and the third level, called the sensor subnet (SSN), consists of passive Fiber Bragg 

Gratings (FBGs) and a few switches. The switch architectures in the RN and various SSNs to 

improve the reliability and scalability of AOFSN are studied. Two SSNs with a regular topology 

are proposed to support simple routing and scalability in AOFSN: square-based sensor cells 

(SSC) and pentagon-based sensor cells (PSC). The reliability and scalability are evaluated in 

terms of the available sensing coverage in the case of one or multiple link failures. 

Keywords: AOFSN; FBG; hierarchical; reliability scalability 

 

1. Introduction 

Optic fiber sensor networks, which are multiplexed with arrays of optical fiber sensors, have 

received increasing attention due to their attractive advantages. They are immune to electromagnetic 
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interference, harsh or hostile environments, and therefore can be deployed in areas where 

electrical-based sensors would fail or require expensive protection. A number of similar or different 

sensors can be attached along a single optical fiber, and remote data over kilometers can be processed 

without corruption. Among the optical fiber sensors, Fiber Bragg Grating (FBG) sensor has been the 

most attractive type due to its smart architecture, large-scale multiplexing capability, immunity to 

electromagnetic interference, and because it is power-free. A popular technique for multiplexing FBG 

sensors is wavelength division multiplexing (WDM). The number of accommodated FBG sensors is 

determined by the usable spectral bandwidth of the system and the wavelength-shift of each FBG 

sensor. FBGs have been studied extensively in terms of strain and temperature measurements. Because 

of the wavelength-encoded nature of FBGs, they can be wavelength-division multiplexed to form an 

array or network for multi-point or quasi-distributed measurements. A popular scheme to realize a 

WDM FBG sensor network involves using a tunable optical filter (TOF) and detecting the peak 

wavelengths when the TOF is scanned through the FBG spectrums in [1-4]. 

The applications of FBG based AOFSN are diverse, such as in environment monitoring, home 

caring, etc. Another application, called structural monitoring, is becoming very important as ever more 

high buildings, large mansions and huge bridges are built. Structural monitoring for such as tunneling, 

building and bridge health are very important, because their damage or collapse will cause serious 

accidents. In order to monitor their security status, large-scale sensor networks are necessary and the 

FBG based AOFSN becomes an appropriate candidate. Regular arrays of FBG sensors multiplexed 

into fibers are distributed inside them to construct large-scale AOFSN and monitor their construct 

security. Such kind of large-scale AOFSNs require high reliability to guarantee the monitoring accuracy. 

Many researches that consider the reliability or construction of sensor networks based on FBG have 

been studied. A novel fiber-laser-based sensor network with a self-healing function is proposed in [1]. 

It is based on adding switches to self-healing ring architectures. Some novel designs of wavelength 

multiplexed fiber sensor networks that are tolerant to one or more cable failures are proposed in [2]. 

They used protection switching to recover service. In [5], the authors introduce a low cost array which 

has a low susceptibility to failure when damage is induced for smart structures using FBGs as sensing 

elements. In [3], a star-bus-ring architecture for FBG sensors was proposed. The FBG survivability and 

capacity of a multipoint sensor system are enhanced by adding remote nodes and 2 × 2 optical 

switches. Research [4] proposed a new sensor-network model that considers the survivability and 

expansibility. However, complex switches were used to ensure reliability, which increases the cost  

and SNR. 

Based on the above achievements, we provide a further detailed insight into the construction of a 

large-scale AOFSN network using FBGs. The proposed AOFSN is composed of three levels and can 

be classified into two active levels consisting of the first interrogation level and the second RN level, 

and a passive level consisting of FBGs. The reliability of the AOFSN network is improved by 

achieving reliability in the second and third levels. As the second level consisting of RNs is active, 

reliability is realized by proposing switching architectures for RN nodes. This enables the optical 

signals to be switched through different routing paths in order to recover FBGs distributed besides 

failed links. The FBG based AOFSN can construct power-efficient sensor network, as the passive FBG 

requires little power to control, but requires complex and expensive interrogator systems to collect and 

analyze the sensing signals. Therefore, simple but efficient routing schemes are necessary to reduce the 
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use of interrogations and to alleviate the burden of the limited and expensive interrogations. As the 

proposed AOFSN network is mainly constructed by wired and passive FBG sensors, the routing 

scheme aims at constructing unicursal and regular virtual topologies. The unicursal concept enables us 

to scan all or near to all FBG sensors by emitting light once. The regular concept enables the 

interrogations to control and process the sensing signals easily. The polygon cell based AFOSN is 

considered to be an appropriate candidate, as they remain unicursal and regular after being extended. 

More specifically, the square and pentagon based AOFSN will be discussed in our research as 

examples of polygon-based topologies for AOFSN. 

In this paper, we first review the proposed different kinds of hierarchical AOFSN networks in our 

previous research in [6]. The two regular types of sensor cells (SC) called the square-based SC (SSC) 

and the pentagon-based SC (PSC), and how to improve the reliability and scalability through the third 

passive SSN level are all reviewed firstly. Then, the reliability and scalability are numerically 

considered in this paper. The reliability is evaluated in terms of how many link failures the proposed 

AOFSN can tolerate. The scalability is evaluated in terms of whether a scaled sensor network can 

maintain a self-similar virtual structure with its lower level structure, so as to maintain a similar sensor 

routing scheme. More exactly in this paper, the reliability is calculated and evaluated by considering 

the coverage sensing area when one or multiple link failures happen, and the scalability is calculated 

and evaluated by considering the number of required FBGs, the cost of the required number of 2 × 2 

switches and the corresponding coverage. 

2. Hierarchical AOFSN Architectures 

As mentioned above, the proposed AOFSN comprises three levels: the first is the 

interrogation/sever (InS). It manages the second and third levels to check for link failure between RNs 

and InS or sensor cells, by sending and collecting scanning signals from RNs; the second level is the 

interface/RNs (Remote Nodes). Several RNs comprise the self-healing ring architecture. Each RN 

manages its own sensor subnet to collect scanning signals from the third level and then they provide 

feedback to the first InS level. The third level is the sensor subnet. It consists of some passive FBG 

sensors, executing the scanning request and providing feedback to their upper RN level. 

The cost of hardware in AOFSN is mainly due to the interrogation and switches and the 

interrogation is the most expensive device. In order to reduce the cost of the most expensive 

interrogation device and utilize it efficiently and sensibly, three different types of hierarchical AOFSNs 

are proposed. They mainly differ in terms of whether the second communication network level and the 

first interrogation level are grouped. By grouping them, the cost due to interrogation and the burden of 

interrogation for demodulating large numbers of signals can be reduced in order to utilize resources 

efficiently. The architectures are discussed in detail and shown in Figure 1.  

The first type is shown in Figure 1. The first level is composed of one interrogation/server for signal 

recognition. The second level is the interface level between the interrogation/server and sensor subnets. 

It is composed of a self-healing unidirectional ring consisting of N RNs. Each RN manages its own 

sensor subnet. All RNs are centrally controlled by the only interrogation and are responsible for 

collecting data and providing feedback to it. Thus, the RNs can simultaneously receive the scanning 

requests from a common interrogation, and they execute the scanning process to provide feedback of 

the scanning results to the interrogation. Finally, the interrogation selects the signals useful for 



Sensors 2010, 10                            
 

2904

recognition and decides the sensing results from all the feedback signals by the below RNs. The 

second type is shown in Figure 1(b). Of all the sensing signals collected by the RNs in the second level, 

the useful ones can be quite rare. Many researches on wireless networks apply a three-point location 

mechanism. Only three sensor nodes are activated for sensing and they provide useful sensing signals 

each time. In the AOFSN, we apply a similar candidate mechanism in the second level in order to 

reduce the burden of the only interrogation. That is, the RNs in the second level are grouped according 

to their geographical positions instead of providing all the raw sensing signals to the only 

interrogations directly. Each time the interrogation sends the scanning request to its below RNs, it 

estimates the approximate geographical scanning region from the results of the last scanning process. 

Then it first selects one or several specific groups to do the scanning process and collects the feedback 

signals from these specific groups. Thus, the burden of the interrogation is further reduced and the 

scanning speed is improved. This screen-out mechanism can be realized by selecting nearby regions 

with higher strength signals according to the last scanning results. The third type is shown in Figure 1(c). 

It is an alternative from the second type. The interrogation level is further grouped according to the 

interrogating techniques. This architecture is applicable for heterogeneous sensor networks, as each 

interrogation can interrogate different types of feedback scanning signals. This type has high flexibility 

compared to the first two types but there is a higher cost, because more interrogations are used. The 

three types of hierarchical architecture were proposed based on the cost or burden of the first two 

levels. The construction of the SSN will be discussed in the next section.  

Figure 1. (a) No grouping in the first two levels; (b) Grouping in the second level; (c) 

Grouping in the first and second levels. 
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3. Sensor Subnet Construction 

FBG has been one of the most promising sensor technologies and has been dynamically developed 

during past decades. FBG is known for its passive characteristic, i.e., FBG sensors are passive devices 

and the transmit carrier involves passive sensing signals. The signals are sent and reflected passively 

without any active actions of their own. The sensing action is processed via InS (or RNs) in the higher 

levels, by comparing their reflected wave or other parameters with their original ones. Therefore, for 

such a wired and passive sensing system, consideration of a unicursal- and regular- connected network 

topology is necessary. The unicursal concept is suggested in order to guarantee that all the FBG 
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sensors can be scanned at once. This enables us to multiplex as many FBGs as possible in one fiber in 

order to reduce the cost. However, to increase the reliability of the AOFSN, several 2 × 2 switches are 

needed to do the recovery process when link failure happens. The regular concept is suggested in order 

to provide a simple routing scheme and improve the scalability. A regular topology is always easy to 

route and can be scaled to larger ones while maintaining a self-similar virtual regular topology and a 

self-similar routing scheme. Based on the above considerations, this section proposes two main basic 

virtual topologies based on the square-based SC (SSC) and pentagon-based SC (PSC), respectively. As 

we previously mentioned, the third level is further divided into three levels, denoted by the Sensor Cell 

(SC), Sensor Subnet Group (SSG) and Sensor Sub Network (SSN).  

3.1. Two Unicursal and Regular SC-Based AFOSN 

3.1.1. Square SC (SSC)-Based AFOSN 

Firstly, we apply a square model as a sensor cell to construct the sensor subnets. As shown in Figure 2(a), 

four FBGs (denoted 1-4) are distributed on each side of the square and one 2 × 2 switch is set at the 

joint point of FBG 1 and FBG 4 in order to guarantee the reliability of its SSC. It should be mentioned 

that more FBGs can be set on each side of an SSC, which can also be seen as a virtual ring topology. 

For simplicity, we discuss the SSC topology which has only one FBG set on each side as shown in 

Figure 2(a). 

The 2 × 2 switch is very important for the SSC in view of survivability if any link failures happen, 

as described in [3,6]. Light can be sent in and out of any of the four ports. The scanning direction is 

clockwise in the normal case and counterclockwise in case of link failure. The SSC can be easily 

scaled to a larger SSC group (SSCG) by connecting four SSCs and the SSCG will still maintain a 

square-like virtual topology, as shown in Figure 2(b). One more FBG is set on the link that connects 

two SSCs. Therefore, 20 FBGs are embedded after the first scaling. In other words, each SSCG 

consists of four SSCs and one CSC (central SC). The SSCG can be further scaled to a larger group, 

which consists of four SSCGs and one CSC. The detail is discussed in the following section. A sensor 

subnet is composed of one or several SSCGs, and we give an example of an AOFSN with an SSN 

consisting of four SSCGs, as shown in Figure 2(c).  

Figure 2. (a) SSC; (b) SSC group; (c) SSN. 
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As mentioned in Section 2, there is one interrogation and four RNs, and the interrogation is 

connected to all four RNS in order to enable light to be sent to them for scanning. The four RNs are 

constructed in a ring manner, thus each is also responsible for recovery when failure happens between 

their upstream RN and the interrogation. In the normal case, the optical signals are sent from the 

interrogation to the four RNs; and then, each RN sends the signal to its responsible SSCG in the 

clockwise direction, in order to collect the feedback signals from all the FBGs. After collecting the 

feedback signals, the RNs analyze if there is any change of the sensing signals. If so, the RN nodes 

provide the feedback of this change to the interrogation; otherwise, they don’t provide any feedback 

signal in order to save the energy of the interrogation. 

3.1.2. Pentagon SC (PSC)-Based AFOSN 

This section considers a pentagon-based sensor cell to construct each sensor subnet. Similar to a 

SSC, five FBGs (denoted 1-5), are distributed on each side of the PSC as shown in Figure 3(a). 

Similarly, one 2 × 2 switch is set at the joint point of FBG 1 and FBG 5 in order to guarantee the 

reliability of each PSC. Light can be sent in and out of any of these four ports. In the normal case, the 

scanning direction is clockwise, and vice versa. PSCs can also be easily scaled to a larger PSC group 

(PSCG) by connecting five PSCs, as shown in Figure 3(b). Two PSCs share a switch and the PSCG 

also maintains a pentagon-like virtual topology for further scaling. A sensor subnet is composed of one 

or several PSCGs, which is similar to that of the SSCG. The difference with the SSC is that no more 

connected links are needed when PSCs are scaled to larger PSCGs. The reliability of the higher two 

levels is discussed and realized mainly by resetting the switch in the RN. Thus, the switch architectures 

are designed first and then the reliability of the SSN level is discussed. 

Figure 3. (a) PSC; (b) PSC group (PSCG). 
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4. Consideration of Reliability 

4.1. Switch Architecture for Higher-Level Reliability 

There are two kinds of link failures of the first two levels: the failure between the interrogation and 

RN, and the failure between RNs. Considering Figure 2(c) for example, only one link failure between 

two RNs does not affect the scanning process for each SSN. However, if a link failure occurs between 

the interrogation/server (InS) and RN, the RN cannot receive the emitted scanning light from the InS 

and the whole SSN under the charge of it cannot be scanned and detected. To solve this problem, RNs 

are connected in a unidirectional ring manner in order to perform self-healing in case of a link failure 
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between itself and InS, as shown in Figure 2(c). In that case, the RN receives scanning signals from its 

upstream RN nodes instead, so as to guarantee good reliability. Therefore, the switch architecture 

within the RN nodes is crucial for the recovery process and is shown in Figure 4(a).  

Four couplers are needed, two for discriminating the control signal from the scanning signals (SSs); 

the other two couplers, named Cn (1    2) and Cf (1    3), are used for recovery when a link failure 

happens. In the normal case, considering Figure 5 for example, the RN receives light from the 

interrogation and then emits light from FBG 1-1 to the other FBGS in a clockwise direction in order to 

collect SSs, as shown in Figure 4(b); if a link failure happens in the third level, signals are emitted 

from InS and split into two by switching to Cn (1    2) in order to scan from F1 and F4 

simultaneously, as shown in Figure 4(c). While in case of a link failure between RNi and InS, the 

switch in node RNi-1 will be reset as follows: scanning signals emitted from the InS port are switched 

to Cn (1    2) and split into two, one for its own SSN from F1 and one for the input of RNi, as shown 

in Figure 4(d). If there is a link failure between RNi-1’s downstream node and InS, and a simultaneous 

link failure within its own managed SSN, the switch is setup as shown in Figure 4(e) for node RNi-1, 

and scanning signals received from InS are switched to Cf (1    3) and split into three, two for its own 

SSN’s scanning from both sides and one for the input of RNi. In view of node RNi, it receives the 

scanning signal from the input port RNi-1 instead of InS. 

Figure 4. (a) Switch architecture of RN; (b) Normal case; (c) Failure in level 3; (d) Failure 

between level 1and 2; (e) Failure between level 1 and 2, within level 3. 
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4.2. Reliability in SSN Level 

This section discusses the reliability of the SSN level for both SSC- and PSC-based AOFSN in 

terms of their self-healing abilities. Considering the SSNs shown in Figure 2(b) and Figure 3(b), both 

are tolerant to at least one link failure. If more than one link failures happen, some of the 2 × 2 

switches should be selected for resetting according to the failure point. Figures 5(a) and (b) show the 

case of one link failure in region SSC3. In the normal case, light is emitted from the RN which is 

connected to SSC1 and then the RN sends scanning signals in a clockwise direction to the remaining 
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sensors. When one link failure happens, as shown in Figure 5(b), the switch in the RN is set to that 

shown in Figure 4(b), and the RN emits light simultaneously in both the clockwise and 

counterclockwise direction for recovery.  

Figure 5. (a) Single-link failure; (b) Self-healing for one link failure. 
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In case of two link failures as shown in Figure 6(a), two sensors in SSC3 and SSC4 cannot be 

scanned in the normal case. In order to rescan the remaining separated sensors, the 2 × 2 switches in the 

two regions SSC3 and SSC4 are reset as shown in Figure 6(b). The switch in the RN is also reset in 

Figure 4(b). The reset signal was previously transmitted through the control channel. The recovery 

process for the SSN of PSC-based AOFSN is shown in Figures 7(a)-(f). The PSC-based SSN in Figure 

3(b) can be made tolerant to up to four simultaneous link failures by resetting the 2 × 2 switches within 

each PSC. There is a separate control channel similar to that of the switch architecture of the RN. The 

control signals for switching settings were sent previously through the control channel before sending 

the scanning signals, so as to set up the switches, then the scanning signals are resent for self-recovery, 

as shown in Figure 7. Figure 7 shows the case of four link failures, which is the extreme case, i.e., even 

though the case of simultaneous four failures will rarely happen, we provide the example to describe 

the self-healing process showing the reliability of the PSC-based SSN. This kind of PSC-based SSN 

can achieve high reliability with strong self-healing capability, by using and resetting several 2 × 2 

switches. The case of two simultaneous link failures in the same region can also be tolerated for the 

PSC-based SSN. In order to recover from the link failure in time, the InS emits light to detects the link 

failure periodically. Each time when InS emits ligth to detect the link failure, it considers there is no 

link failure and sends signals to set all the switches as shown in Figure 4(b). The switching time of 

each switch is supposed to be  and the total(longest) fiber length is set to be l. Therefore, the timeout 
time for the InS to wait for the feedback signals is   



s

j
jtimeout vlT

0

/ , where v is the velocity of 

light speed in fiber, s is the total number of switches, and j is the switching time of the j-th switch,  

is the extra time to guaratee that InS can receive the feedback signal. If InS receives no feedback signal 

after Ttimeout, InS will judge that all the links between InS and RNs are broken. On the other side, if all 

the signals are feedbacked after Ttimeout, InS decides there is no link failures anywhere. Otherwise, if 

any emitted signals are not feedbacked, InS can decide the positions of failure links and their 

responsible switch, and then start to recover. The recovery signals are decided by the InS, distributed to 

RNs, and executed by switches as introduced in Chapter 4. 
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Figure 6. (a) Dual-link failures; (b) Self-healing for dual-link failures. 
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Figure 7. (a) Four link failures; (b) Self-healing 1; (c) Self-healing 2; (d) Self-healing 3;  

(e) Self-healing 4; (f) Self-healing 5. 
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5. Consideration of Scalability 

This section discusses the scalability of the proposed AOFSN. Large scale sensor networks 

consisting of hundreds of thousands of sensor nodes can link the physical world to global 

communication networks for a broad set of applications. The current technology for embedding FBG 

sensors can multiplex as many as 1000 FBGs into one fiber in order to construct a large sensor array. 

Considering this advantage and the current requirement for large-scale sensor systems, it’s necessary to 

discuss the performance of our proposed SSN after scaling to a larger scale. As we have discussed, for 

the small-scale SSNs, which consist of the 20-FBG shown in Figure 5 for SSC, and the 25 FBGs 

shown in Figure 8 for PSC, we tried to scale them in order to multiplex as many as possible. After 

scaling the small-scale SSNs to a large-scale AOFSN system, the maintenance of the routing 

mechanisms for scanning sensors, in both the normal case and the case of link failure happening, is 

important for maintaining low cost and simplicity. The SSC- or PSC-based SSNs were proposed to 

realize scaling, as previously mentioned. As their topologies are regular and unicursal, they have good 

scalability in view of maintaining a self-similar virtual topology and the same recovery routing 

algorithms for the much larger scales shown in Figures 8 and 9. As we can see in Figure 8, Figure 8(a) 



Sensors 2010, 10                            
 

2910

shows the basic square-based sensor cell (SSC) consisting of four FBGs and an RN node. Figure 8(b) 

is scaled from the SSC shown in Figure 8(a) and it is consisted of four SSCs and an additional central 

sensor cell (CSC). The CSC in the center of the four SSCs is added to connect the four SSCs, and its 

architecture is the same as the other SSCs. Figure 8(c) is scaled from the SSC group (SSCG) shown in 

Figure 8(b) and is consisted of four SSCGs and an additional CSC5 in the center to connect the four 

SSCGs. By scaling in the manner shown in Figures 8(b) and (c), the routing mechanism in the normal 

case and in case of link failures can be maintained, as the architectures in Figures 8(a), (b) and (c) 

remain self-similar. The differences are that more switches should be set for the high-scale 

architectures, to switch the control signals in case of link failures. 

Figure 8. (a) SSC; (b) first extension; (c) second extension. 
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Figure 9. (a) PSC; (b) first extension; (c) second extension. 
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In view of the PSC-based architectures shown in Figure 9, the process is very similar to that shown 

in Figure 8. The architecture in Figure 9(b) is scaled from that shown in Figure 9(a) and consists of 

five PSCs. Similarly, the architecture shown in Figure 9(c) is scaled from that shown in Figure 9(b) 

and consists of the five PSCGs shown in Figure 9(b). Two adjacent PSCGs are connected by one 

switch, thus improving the reliability. So, we propose the concept of scaling degree. The scaling degree 

is one based on Figures 8(a) and (b), and it is two based on Figures 8(b) and (c).  
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6. Numerical Results 

6.1. Reliability Analysis 

The reliability of a sensor network in case of node or link failures is crucial, as it decides the 

sensing accuracy of an objective in case of failures; node or link failures do happen as time advances. 

The sensing accuracy of a sensor network is further decided by the coverage of the sensors. In other 

words, the sensing coverage characterizes the monitoring quality provided by a sensor network in a 

designated region. Distributed detection requires that every location be monitored by one or multiple 

nodes, and distributed tracking and classification requires even higher degrees of coverage. A network 

with a higher degree of coverage can maintain acceptable coverage in the face of higher rates of node 

or link failures. So the coverage of sensors in case of failures also decides the reliability of the sensor 

network. In this research, the sensing range of all the FBG sensors is assumed to be r and the length of 

the square side is supposed to be 2r. Moreover, the sensing range of each FBG sensor is supposed to be 

represented by a circle, considering the FBG as the central angle and r as the radius, as shown in 

Figure 10. 24 FBGs are used in the SSC group (SSCG) and the total coverage of the 24 sensors is 

shown by the circles in shadow. The coverage area of the 24 FBGs is calculated by formula (1).  








 


2

4
48)2(5

22
22 rr

rrSCovered

   (1) 

Figure 10. Coverage of SSC group (SSCG). 

 
 

In order to calculate the reliability of the proposed AOFSN architecture, the coverage area when a 

link failure happens needs to be considered. The probability of a fiber link failure is supposed to be p. 

Thus, the probability of one link failure within one SSC in Figure 8(a) is calculated by formula (2), 

where n is the number of FBGs within a SSC (four in this case). It is assumed that more than one link 

failure within one SSC cannot happen, but multiple link failures within different SSCs can happen. 

Consider Figure 8(b) for example; it consists of five SSCs, so the probability of i simultaneous link 

failures,  , is calculated by formula (3), where N is the number of SSCs (five in this case). 

  (2) 

 (3)

Then, the lost coverage after i link failures has happened is calculated for the SSC-based network. 

In section 4.1 and 4.2, reliability has been achieved by proposing the recoverable switching RN node. 

The recovery paths according to the proposed switching nodes have also been shown. However, there 

are still some FBGs that cannot be recovered if more than one link failure happens. If an FBG is not 

S S C(1 )i N i
i N iP C P P  

1 1
SSC 1 (1 )n

nP C p p  
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recovered, it loses its sensing coverage. Consequently, the reliability of the SSC-based network is 

affected. It is calculated by formula (4), where Ai is the sensor network availability when link failure 

happens and RLost(i) is the loss rate of sensing coverage when i link failures have happened.  

  (4) 

(1). One link failure 

When one link failure happens, the FBGs separated by the failed link can be recovered by resetting 

the switches appropriately in the RNs, as shown in Figures 5(a) and (b). Thus, there will be no loss in 

the sensing coverage area and the AOFSN network can still operate as normal, as there is no link 

failure. Moreover, wherever the one link failure happens, i.e., regardless of whether it is in SSC1, 

SSC2, SSC3, SSC4 or the central sensor cell, the sensor network can recover the link failure by routing 

to the lost FBGs through different paths. In conclusion, the coverage loss ratio is zero when only one 

link failure happens, i.e., RLost(1) = 0. The availability when one link failure happens is calculated by 

formula (5) according to (4) and is 1 or 100%. 

1)1(1 11  LostRPA   (5) 

(2). Two link failures 

When two link failures happen, most of the FBGs separated by the failed points can be recovered by 

resetting the switches in the RNs and the 2 × 2 switches that connect two sensor cells. However, not all 

FBGs can be recovered, i.e., some sensing coverage will be lost. Moreover, the lost coverage depends 

on the positions of the failed links. There are various combinations of positions of the two link failures, 

i.e., they may lie in SSC1 and SSC2, or SSC2 and SSC4, or between the central SSC5 and any other 

SSCs. Different combinations lead to different lost coverage. Thus, the reliability of two link failures 

cannot be calculated directly according to formula (4). After analyzing the lost coverage of all 

combinations, they can be divided into the two cases shown in Figures 11 and 12.  

Case 1:    

Figure 11. Unrecoverable FBGs in case 1. 
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Figure 12. Unrecoverable FBGs in case 2. 
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After recovery, only one FBG sensor node cannot be recovered in case 1, as shown in the shadow 

ellipse in Figure 11, while six FBG sensor nodes cannot be recovered in case 2, as shown in Figure 12. 

Obviously, the lost coverage area in case 2 is much higher than that of case 1. The lost ratio of the 

coverage area in case 1 is calculated as shown in Figure 13(a). Similarly, the lost ratio of the coverage 

area in case 2 is calculated as shown in Figure 13(b). The lost area and lost ratio in case 1 is calculated 

according to formulas (6) and (7). For the coverage area after recovery, the lost area and the lost ratio 

in case 2 are calculated according to formulas (8), (9) and (10) respectively. 

 

  (6) 

 (7)

22222
2 27.281

2
5223)2(3 rrrrrSActual 






 
  (8)

 (9)

 (10)

        

Figure 13. (a) Area loss in case 1; (b) Area loss in case 2.   

      
(a)                (b)   

Figure 14. FBG distribution in SSC5. 
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As mentioned previously, there are various combinations of positions of the two link failures. These 

are as follows: {SSC1 & SSC2, SSC1 & SSC3, SSC1 & SSC4, SSC1& SSC5, SSC2 & SSC3, SSC2 & 

SSC4, SSC2 & SSC5, SSC3 & SSC4, SSC3 & SSC5, and SSC4 & SSC5}. All 10 combinations can be 

classified into the above two cases. The important issue is how many should be classified into case 1 

and how many should be classified into case 2. They are classified according to the following rules, by 

considering SSC5 separately. Each rule is exclusive with respect to the others.  

Rule 1: If one of the two link failures lies in SSC1 which is directly connected to the RN node, the 

combination is classified into case 1. There are three combinations as follows:  

2 2 2
1 4 0.86LostS r r r  

2 2
1 (2) 0.86 / 46.84 1.8%LostR r r 

2 2 2
2 46.84 28.27 18.57LostS r r r  

2 2
2 (2) 18.57 / 46.84 39.6%LostR r r 
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Case 1: {SSC1 & SSC2, SSC1 & SSC3, SSC1 & SSC4} 

Rule 2: If the two link failures lie in the two SSCs which are parallel in position besides SSC5, the 

combination is classified into case 1. There are two combinations as follows: 

Case 1: {SSC2 & SSC3, SSC3 & SSC4} 

Rule 3: If the two link failures lie in the two SSCs which are diagonal in position, the combination 

is classified into case 2. There is one combination as follows: 

Case 2: {SSC2 & SSC4} 

Rule 4: In view of the fact that one link failure lies in SSC5, the combinations cannot be directly 

classified into case 1 or case 2. If the position of another link failure is separated by two 2 × 2 switches 

from the one in SSC5, the combination should be classified into case 2, except for the cases when the 

other link failure lies in SSC1. While if the two positions are only separated by one 2 × 2 switch, the 

combination should be classified into case 2. There are 10 sub-combinations that can be classified into 

case 1, and six sub-combinations that can be classified into case 2, as follows (referring to Figure 14): 

Case 1:  

{FBG1 & SSC1, FBG1 & SSC2, FBG2 & SSC3, FBG2 & SSC4, FBG3 & SSC3, FBG 3 & SSC4, 

FBG4 & SSC1, FBG 4 & SSC4, FBG2 & SSC1, FBG3 & SSC1} 

Case 2:  

{FBG1 & SSC3, FBG1&SSC4, FBG2 & SSC4, FBG3 & SSC2, FBG4 & SSC2, FBG4 & SSC3} 

However, the sub-combinations came from the four combinations between SSC5 and the other 

SSCs (SSC5 & SSC1, SSC5 & SSC2, SSC5 & SSC3, and SSC5/4). Therefore, a total of 2.5 

combinations are classified into case 1, and 1.5 combinations are classified into case 2, according to 

rule 4. So when two link failures happen, there are three combinations according to rule 1, two 

combinations according to rule 2, and 2.5 combinations according to rule 4, which can be classified 

into case 1. So, a total of 7.5 combinations are classified into case 1, and 2.5 combinations are 

classified into case 2. Considering that the loss ratios in case 1 and case 2 are 1.8% and 39.6% 

respectively, the availability when two link failures happen, says A2, can be calculated by formula(11) 

as:   

2
2212

2 1125.01
)2(#)1(#

)2(#)2()1(#)2(
1 P

ofcaseofcase

ofcaseRPofcaseRP
A LostLost 




   (11) 

(1) Three link failures 

After discussing the network reliability in case of one link failure and two link failures, the 

reliability when three link failures happen is discussed. However, only the worst case is discussed. 

When three link failures happen, the worst case of losing sensing coverage happens in the situation 

shown in Figure 15. After recovery, it is still the case that more than half of the FBG sensors cannot be 

recovered. If three link failures happen, the actual coverage is shown in Figure 15. The actual coverage, 

the lost coverage, the lost ratio and the availability when three link failures happen, denoted by   are 

calculated according to formulas (12), (13), (14), and (15), respectively. 

 

 

 

3A
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Figure 15. Sensing coverage under three failures. 
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3333 608.01%8.601)3(1 PPRPA Lost   (15)

(2) Reliability calculation 

As the probability of more than three link failures happening simultaneously is quite low, this is not 

considered. This paper considers the network availabilities supposing the probabilities of one link 

failure to be 0.1%，0.05%, and 0.01% respectively. The probabilities of i (1, 2, 3) link failures within 

one or multiple SSCs are shown in Table 1. They are calculated according to formulas (2) and (3). The 

availabilities of sensing coverage in case of i link failures are calculated according to formula (4) and 

are shown in Table 2. 

Table 1. Probability of i link failures: Pi 

P 

Pi 

0.1% 0.05% 0.01% 

P1 0.019624 0.009905 0.001996

P2 0.000157 3.96E-05 1.6E-06 

P3 6.29E-07 7.93E-08 6.39E-10 

Table 2. Network Availability of i link failures: Ai 

P

Ai 

0.1% 0.05% 0.01% 

A1 1 1 1 

A2 0.99996 0.999996 1 

A3 0.999999 1 1 

6.2. Scalability Analysis 

After analyzing the reliability in case of link failures for the SSC-based SSN, this section analyzes 

the cost when scaling the sensor networks to large scales. The required numbers of FBGs and switches 

for both SSC- and PSC- based SSNs are calculated in Tables 3 and 4. As the current technology for 

embedding FBG sensors can multiplex as more as 1,000 FBGs into one fiber [7], we consider to scale 

2 2 246 .84 18 .35 28 .49L ostS r r r  
2

2
28 .49(3) 60 .8%

46.84Lost
rR

r
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them to multiplex as more as 1,000 or at least close to 1,000 FBGs into one fiber. Thus, the scaling 

degree of the two kinds of AOFSN is considered to three (the number of FBGs will exceed the 1,000 if 

further scaled). The calculation of the needed number of sensors and switches after scaling can be 

calculated as shown in 1) and 2), where i means the scaling degree.  

1) Number of total sensors and switches for SSC-based AOFSN: 




1

1

4
is

s

s and 




is

s

s

1

4 . 

2) Number of total sensors and switches for PSC-based AOFSN:    and 




is

s

s

1

5 . 

The formulas in 1) can be obtained from Figure 8(a) to Figure 8(c). The number of required FBGs 

and switches in Figure 8(a) are 4 and 1, respectively; after the first scaling as shown in Figure 8(b), the 

number of required FBGs and switches becomes 4 × 4 + 4 (=20) and 4 respectively; after the second 

scaling as shown in Figure 8(c), the number of required FBGs and switches becomes (4 × 4 + 4) × 4 (=84) 

and 4 × 4 + 4 (=20) respectively. Inductively, the number of required FBGs and switches for the 

SSC-based AOFSN are 




1

1

4
is

s

s and 




is

s

s

1

4 respectively. The formulas in 2) for PSC-based AOFSN can 

be obtained from Figure 9(a) to Figure 9(c) by the same induce as that for SSC-based AOFSN. 

Tables 3 and 4 show the scaling speed and the scaling cost in terms of the required numbers of 

FBGs and switches for SSC and PSC-based SSNs according to the above calculation. Moreover, the 

sensing coverage for different scaling degrees is also shown. In the context of SSC-based SSNs, the 

number of sensor nodes increases from 20 to 84 when scaling from degree 1 to degree 2, while the 

needed number of switches only increases from 4 to 20. When it is scaled to degree 3, the number of 

required switches is increased to 84, which is quite small compared to the number of required 340 

FBG sensors. This is indicating good scalability in view of the large number of FBGs after scaling, and 

less cost in view of the number of switches compared to that the corresponding FBGs. In view of the 

PSC-based SSN, the scaling speed in terms of the number of FBGs is better than that of the SSC-based 

SSN; however, the cost in terms of the number of required switches is much higher than that of the 

SSC-based SSN. 

Table 3. Scalability of SSC. 

Scaling Degree

SSC 

i = 1 i = 2 i = 3 

# of sensors 20 84 340 

# of switches 4 20 84 

Sensing Coverage 10.28 2r  46.84 2r  193.08 2r  

Table 4. Scalability of PSC. 

Scaling Degree

PSC 

i = 1 i = 2 i = 3 

# of sensors 25 75 625 

# of switches 5 30 155 

Sensing Coverage 14.43 2r  61.33 2r  311.00 2r  

15 i

260

444




260

444
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7. Conclusions 

This paper considered analyzing the reliability and scalability of a large-scale hierarchical all optical 

fiber sensor networks based on FBG sensors. The Hierarchical AOFSN consists of three levels to 

guarantee reliability. We focused on the third sensor subnet level due to its passivity. To guarantee 

reliability for the first two higher levels, the switch architecture for RN was proposed. This kind of RN 

architecture is recoverable for the SSN system when link failure happens between RNs and InS or 

between FBGs, or both. The basic segment in the third SSN level is called the sensor cell, including 

square-based SC (SSC) and pentagon-based SC (PSC) in our research. The two kinds of SCs were 

proposed based on their regularity and unicursal characteristic, which is good for simple routing and 

good scalability. The reliability of SSC-based AOFSN was evaluated and analyzed in terms of the 

sensing ability (coverage area) in cases that one or multiple link failures happen. And the sensing 

reliability of the proposed architecture even exceeds 99.999%, satisfying the five 9s’ requirement of 

reliability. The scalability was evaluated in terms of the maintenance of a self-similar topology as well 

as the scaling speed of sensing coverage after the SSC- and PSC-based AOFSNs have been scaled. The 

cost in terms of the required number of FBGs and 2 × 2 switches was also considered as an evaluation 

of the scalability. The calculations show that the rate of increase of the number of required FBGs is 

much higher than that of the corresponding number of required 2 × 2 switches and the sensing 

coverage is also scaling fast. 
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