
Expert Systems with Applications 38 (2011) 8913–8920
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Joint congestion control and processor allocation for task scheduling in grid over
OBS networks

Yahong Yang a,⇑, Guiling Wu b, Wei Dai b, Jianping Chen b

a Shanghai Institute of Space-Power Supply, 2965 Dongchuan Road, Shanghai 200245, China
b The State Key Laboratory on Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

a r t i c l e i n f o
Keywords:
OBS
Grid
Cross-layer design
Congestion control
Processor allocation
Load balancing
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.01.107

⇑ Corresponding author.
E-mail addresses: yuer1224@gmail.com, yuer1224
a b s t r a c t

This paper presents a task scheduling algorithm that fulfills the coordination of congestion control in
conjunction with processor allocation in the grid over optical burst switching networks. Two requirement
criteria, namely deadline and payment, are considered and formulated as a user utility maximization
function. The optimization problem is decomposed into two parts: congestion control for network trans-
mission rate adjustment and processor allocation for computational capacity adjustment. The parameters
from the resource layer are abstracted and provided to a cross-layer optimizer to maximize user’s utility
function. The effectiveness and performance of the algorithm are evaluated via simulations. Comparison
with other algorithms shows the efficiency of the proposed algorithm.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Grid is becoming attractive for its ability to provide super
computing capacities and better sharing of distributed resources
(Foster, Kesselman, & Tuecke, 2001). With the expansion of grid
applications and the development of large-scale computation and
data-intensive traffic, the network becomes data transmission
bottleneck between resources. Hence, integrating grid resources
with emerging high-performance optical network technologies,
including fast optical switching and dense wavelength division
multiplexing (DWDM), appears to be the natural choice
(Mambretti et al., 2003). Optical burst switching (OBS) is consid-
ered as a promising grid underlying network solution because of
its low delay, variable burst length and separate control (Qiao &
Yoo, 1999). In grid over OBS (GoOBS) environment, resources are
widely distributed and owned by many different organizations. A
good resource management system is essential to exert the full
advantage of GoOBS. The management system is responsible for re-
source discovery, resource selecting, task scheduling and resource
maintenance, where the scheduling algorithm is one of the most
important issues (Tseng, Chin, & Wang, 2009). Most of the existing
grid resource allocation and scheduling algorithms mainly focus on
isolated layers of the grid architecture. The inflexibility of the rigid
layered structure results in an inefficient utilization of resources
(Baker, Buyya, & Laforenza, 2002). Especially, in OBS networks,
because of the optical switch’s bufferless property, burst loss
mostly induced by contention may be mistaken for heavy
ll rights reserved.

@tom.com (Y. Yang).
congestion so that a time out event will trigger unnecessary TCP
congestion control resulting in significant throughput degradation
(Yu, Qiao, & Liu, 2004). Thus, the rigid layered scheme of traditional
grid does not suit to the unique characteristics of GoOBS and it is
very important and necessary to deal with GoOBS system as a
whole to achieve the optimal performance. Cross-layer design is
based on information exchange and joint optimization among the
multiple layers so that it allows us to propagate ambient parame-
ter changes quickly throughout the multiple layers (Shakkottai,
Rappaport, & Karlsson, 2003). This idea does not absolutely deny
the layered model but blur the strict layered limits by integrating
the characteristic parameters distributed in the sublayers of grid.
Therefore, it is well suited to the dynamic, autonomous and heter-
ogeneous GoOBS environment (Yang, Wu, Li, & Chen, 2009).

This paper proposes a joint congestion control and processor
allocation algorithm for GoOBS task scheduling. Two requirement
criteria, namely deadline and payment, are considered and formu-
lated as a user utility maximization function. A utility model is a
simple and general means for users to specify their preference
(Lee, Lee, & Sohn, 2009), which is suitable for dynamic and heter-
ogeneous GoOBS. In order to maximize user utility, the congestion
control for network transmission rate adjustment and processor
allocation for computational capacity adjustment is studied.
Congestion control mechanisms, such as those in transmission
control protocol (TCP), regulate the allowed source rates according
to the network congestion so that the total traffic load on any link
does not exceed the available capacity. At the same time, the
attainable grid user utility also depends on the processor allocation
that partitions a certain number of system processors to jobs in
order to avoid system saturation (Dussa, Carlson, Dowdy, & Park,

http://dx.doi.org/10.1016/j.eswa.2011.01.107
mailto:yuer1224@gmail.com
mailto:yuer1224@tom.com
http://dx.doi.org/10.1016/j.eswa.2011.01.107
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

8914 Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920
1990). Simulations are carried out to verify the performance of the
proposed algorithm. Deadline and budget constrained (DBC)
scheduling algorithm is a widely used algorithm, which employs
economy-driven method to allocate resources to application jobs
in such a way that the grid user’s requirements are met (Buyya,
Murshed, & Abramson, 2002). However, it does not take into ac-
count the changes of grid resources and user requirements and
might be unable to allocate resources efficiently. The algorithm
we proposed adopts the idea of cross-layer design and aims to
dynamically meet the requirements of the upper layer applications
by adjusting the resources and parameters in underlying layers.

The rest of the paper is arranged as followings: Section 2 pre-
sents GoOBS task scheduling modeling and optimization solutions.
In Section 3 the simulations are conducted to validate our pro-
posed algorithm. Section 4 concludes the paper.
2. GoOBS task scheduling modeling and optimization solutions

2.1. Fundamental

In OBS networks, due to the bufferless nature of optical switch,
when multiple bursts contend for the same link at about the same
time, only one burst can be successfully switched in the optical
domain (Wang, 2003). All other overlapping bursts need to be
dropped. This results in low link utilizations and high burst drop
rates. Some existing contention resolution schemes such as fiber-
delay lines, wavelength conversion and deflection routing may be
used in OBS networks. However, these existing schemes have their
own drawbacks. On the other hand, although they can reduce the
degree of contention and thus the packet drop rate some what,
they are ineffective when the offered load is excessively high
(Chen, Kuo, Yan, & Liao, 2009; Wang, 2003). It is thus very
necessary to use a congestion control mechanism to control the
load offered to OBS networks. Congestion control dynamically reg-
ulates the transmission rate of each connection using feedback
information from network so that congestion is controlled or even
avoided. It is therefore especially suitable for data transfer service
(Ohsaki, Murata, Suzuki, Ikeda, & Miyahara, 1995). In the Internet,
TCP plays the role of network congestion control and end-to-end
rate allocation. TCP uses sliding windows to adjust the allowed
transmission rate in each source based on implicit or explicit feed-
back of the congestion signals. Different versions of TCP adopt
different congestion measures, such as by packet loss (TCP Reno)
(Low, Paganini, Wang, Adlakha, & Doyle, 2002), by queuing delay
(TCP Vegas) (Brakmo & Peterson, 1995) and by queue length (TCP
RED) (Floyd & Jacobson, 1993). In this paper, we use TCP Reno at
the sources because of its popularity (Low et al., 2002).

In the parallel computing system, the resource requirements
may vary significantly among the jobs and the demands on the re-
sources may be unpredictable (Yu & Zhou, 2010). Additionally, par-
allel applications may not be able to efficiently utilize all the
processors in the system because the efficiency of parallel jobs
generally decreases as their processor allocation increases (Dussa
et al., 1990). The efficient job scheduling that maximizes through-
put while maintaining job load balancing has always been a critical
issue. The various studies have shown the processor allocation for
parallel computing system is a good solution, which ensures both
that no processors are needlessly idle and that jobs exhibit good
load balancing (McCann & Zahorjan, 1994). Processor allocation
is to partition the system processors into disjoint sets that are allo-
cated to individual jobs, with the objective of maximizing through-
put over many jobs. There are three policies. Static scheduling
allocates fixed number of processors to each job (Majumdar, Eager,
& Bunt, 1991). It is simple to implement at the cost of lower perfor-
mance. Dynamic scheduling allows the number of processors to
vary during its execution (Dussa et al., 1990). The overhead for
reallocating processors during execution may be considerable.
Adaptive scheduling adjusts processors according to the workloads
by calculating a job’s partition size (Ghosal, Serazzi, & Tripathi,
1991). The partition size does not change until the job execution
completes. The overhead is minimal. Adaptive scheduling is re-
garded as the best approach for processor allocation (Ghosal
et al., 1991; McCann & Zahorjan, 1994) and we adopt it in our
algorithm.

Augmenting the utility maximization framework to include lay-
ers other than transport layer leads to a general methodology for
cross-layer design, which jointly optimizes the parameters of all
layers based on information exchange. It can improve the through-
put and load balancing of the grid.

2.2. Model and solutions

Consider a GoOBS environment consisting of Q nodes, where
some nodes are edge nodes and some nodes act as core nodes. A
part of the edge nodes connecting F client hosts to submit user’s
requirement. The others connecting M servers acting as computa-
tional resource (denoted as R1, R2, . . ., RM). Each computational re-
source includes a certain number of processors, which are
different in terms of computational capacities and prices of CPU
time. OBS nodes are interconnected by links. Let C be the capacity
of link. Suppose a grid user has a task consisting of N jobs (denoted
as J1, J2, . . ., JN) to be processed in GoOBS environment. It is desired
to complete as many jobs as possible under a certain time (denoted
as T0) and budget (denoted as E0) limits. The objective of the task
scheduling is to assign qualities and resources so that the grid user
utility is maximized subject to the resource and user preferences
constraints. Without losing the generality, we made the following
simplifications: (1) Jobs are inter-independent. (2) Once a job is
initiated, it will be completed without preemption. The notations
used in the following sections are listed in Table 1.

The user utility function we proposed is as follows:

Max x1 T0 �
XF

s¼1

XM

k¼1

XN

i¼1

/sk
i di

yk
s
�
XM

k¼1

XN

i¼1

uk
i bi

Zk
� D

 !(

þx2 E0 � v �
XF

s¼1

XM

k¼1

XN

i¼1

/sk
i di

yk
s

�
XM

k¼1

XN

i¼1

ck
Zk

Pk
�uk

i bi

Zk

!)

s:t:
XF

s¼1

yk
s 6 C ðk ¼ 1;2; . . . ;MÞ

XM

k¼1

Zk 6
XM

k¼1

akPk

/sk
i ¼ 0 or 1; ði ¼ 1;2; . . . ;N; s ¼ 1;2; :::; F; k ¼ 1;2; :::;MÞ

uk
i ¼ 0 or 1; ði ¼ 1;2; :::;N; k ¼ 1;2; . . . ;MÞ

yk
s > 0; Zk > 0

ð1Þ

where x1 and x2 stand for the weights of deadline and payment,
respectively. They provide the clients with the right to flexibly specify
their weights for money and time (Feng, Song, Zheng, & Xia, 2004).
The deadline is the overall time spent by a task in the grid. The task
deadline can be broken into two parts: computational time and trans-
mission time. Payments include those for computational resource and
network bandwidth resource. di and bi are the data size and computa-
tional quantity of the ith job, respectively. yk

s denotes the TCP transmis-
sion rate in the path from the client node s to the destination resource
node k. If di value of job i is really transmitted from source node s to

Table 1
The description of notations.

Notations meanings

Q The total number of OBS nodes
F The number of client nodes
M The total number of computational resources
C The capacity of link
N The number of jobs
T0 The time limit given by a task
E0 The budget limit given by a task
wi The priority weight assigned by the grid
bi The computational quantity of the ith job
di The data size of the ith job
yk

s
TCP transmission rate in the path from the client node s to the
destination resource node k

Zk The required computational capacity from resource k
D The delay time
v The cost per unit time of OBS network
ck The cost of single processor per unit CPU time of the kth computational

resource
Pk The computational capacity of individual processor
ak The total number of processors of the kth computational resource

kk
s

The burst loss ratio of the TCP path from the client node s to the
destination node k

ql The burst loss ratio of link l in the TCP path from the client node s to the
destination node k

gk The difference between the load on computational resource k and the
average load

Lk The time spent on the computational resource k
bk The assigned number of processors belonging to computational

resource k
RLD The criterion to measure the load balancing degree of GoOBS system,

which is the sum of computational RLD and network RLD

Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920 8915
destination node k, then the value of /sk
i will be 1 otherwise /sk

i is 0. If
we really assign bi value to job i, then the value of uk

i will be 1 other-
wise uk

i is 0. Zk denotes the required computational capacity from re-
source k. D denotes the delay time. v is the cost per unit time of OBS
network. ck is the cost of individual processor per unit CPU time of
the kth computational resource and Pk is the computational capacity
of individual processor. ckZk/Pk indicates the required cost of processors
per unit CPU time when the computational capacity Zk is assigned to
jobs. The constraint condition implies that the aggregate network flow
rate does not exceed the capacity C and the aggregate computational
capacity does not exceed the total computational capacity akPk. ak is
the total number of processors of the kth computational resource.

This task scheduling model is a nonlinear optimization problem.
We can apply the Lagrangian method to solve such a problem. Con-
sider the Lagrangian multipliers kk

s and gk as, respectively:
ðyk
s Þ
� ¼

ffi
ðx1 þx2 � vÞ �

PN
i¼1/

sk
i di

kk
s

s
¼ xk

s ðtÞ þ
1� kk

s

ðDk
s Þ

2 �
1
2

kk
s ½xk

s ðtÞ�
2) xk

s

kk
s ¼ 1�Pð1� qlÞ ð2Þ

gk ¼ Lk �
XM

k¼1

Lk=M

�����
����� ð3Þ

where kk
s represents the burst loss ratio of the TCP path from the cli-

ent node s to the destination node k, ql is the burst loss ratio of link l
in the TCP path. gk represents the difference between the load on
computational resource k and the average load. It reflects the load
balancing of each computational resource and the less the differ-
ence the more balanced the resource. Lk is the time spent on the
computational resource k. M is the total number of computational
resources.

Then the Lagrangian form of this optimization problem is as
follows:

Lðyk
s ;Zk; kk

s ;gkÞ ¼x1 T0 �
XF

s¼1

XM

k¼1

XN

i¼1

/sk
i di

yk
s
�
XM

k¼1

XN

i¼1

uk
i bi

Zk
�D

 !

þx2 E0 � v �
XF

s¼1

XM

k¼1

XN

i¼1

/sk
i di

yk
s
�
XM

k¼1

XN

i¼1

ck
uk

i bi

Pk

 !

�
XF

s¼1

XM

k¼1

kk
s yk

s � C

 !
�
XM

k¼1

ðgkZk � akPkÞ

ð4Þ

From Karush–Kuhn–Tucker theorem, we know that the optimal
solution is given oL(y,Z)/oy = 0 for kk

s P 0, i.e.,

@Lðyk
s ; ZkÞ
@yk

s
¼ ðx1 þx2 � vÞ �

PN
i¼1/

sk
i di

ðyk
s Þ

2 � kk
s ¼ 0 ð5Þ

Then we can obtain the unique optimal transmission rate ðyk
s Þ
� that

maximizes the grid user utility

ðyk
s Þ
� ¼

ffi
ðx1 þx2 � vÞ �

PN
i¼1

/sk
i di

kk
s

vuuuut ð6Þ

In TCP layer, the source rate xk
s is adjusted by TCP Reno since it uses

packet loss as signals of congestion, which is matched with our link
prices kk

s . The basic rate adjustment mechanism of TCP Reno is as
follows (Low, Paganini, & Doyle, 2002):

xk
s ðt þ 1Þ ¼ xk

s ðtÞ þ
1� kk

s

ðDk
s Þ

2 �
1
2

kk
s xk

s ðtÞ
� �2 ð7Þ
ðtÞ ¼

1
kk

s
1þ

ffi
1� 2kk

s

ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r
� 1�kk

s

ðDk
s Þ

2

" #vuut
8<
:

9=
; 1�kk

s

ðDk
s Þ

2 �

ffi
ðx1þx2�vÞ�

PN
i¼1

/sk
i di

kk
s

vuut

1
kk

s
1�

ffi
1� 2kk

s

ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r
� 1�kk

s

ðDk
s Þ

2

" #vuut
8<
:

9=
;ffi

ðx1þx2�vÞ�
PN

i¼1
/sk

i di

kk
s

r
� 1

2kk
s
� 1�kk

s

ðDk
s Þ

2

�
ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

xk
s ¼Wk

s=Dk
s)Wk

s ¼

Dk
s

kk
s

1þ

ffi
1� 2kk

s

ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r
� 1�kk

s

ðDk
s Þ

2

" #vuut
8<
:

9=
; 1�kk

s

ðDk
s Þ

2 P

ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r

Dk
s

kk
s

1�

ffi
1� 2kk

s

ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r
� 1�kk

s

ðDk
s Þ

2

" #vuut
8<
:

9=
;ffi

ðx1þx2�vÞ�
PN

i¼1
/sk

i di

kk
s

r
� 1

2kk
s
6

1�kk
s

ðDk
s Þ

2 6

ffi
ðx1þx2�vÞ�

PN

i¼1
/sk

i di

kk
s

r

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

8916 Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920
where Dk
s is the round trip time.

In order to acquire the required transmission rate ðyk
s Þ
�, the

source rate xk
s is modified as:So, the window size Wk

s is updated
by:The processor allocation problem is solved in the similar meth-
od. Let oL(y,Z)/oZ = 0, then

@Lðyk
s ; ZkÞ

@Zk
¼ x1 �

PN
i¼1uk

i bi

ðZkÞ2
� gk ¼ 0 ð10Þ

We can get the optimal computational capacity:

Zk ¼
ffi
x1 �

PN
i¼1uk

i bi=gk

q
.

Then the unique optimal the number of processors b�k maximiz-
ing the grid user utility is:

b�k ¼

ffi
x1 �

PN
i¼1uk

i bi=gk

q
Pk

2
666

3
777 ð11Þ

By above analysis, a joint congestion-control and processor-
allocation (JCCPA) algorithm for GoOBS task scheduling is designed
as follows:

(1) At the GoOBS core node, the burst loss ratio kk
s ðtÞ of each link

is periodically collected and sent to a cross-layer optimizer
through the control channel.
SJTU
(Grid

Scheduling
 Node)

GSN

F
U

Shanghai Normal
Univ.

Ea
Science

Tongji Univ.
Huxi Campus

Shanghai
Univ.

East China
Normal Univ.

Donghua
Univ.

Shanghai
Finance & Economics

Univ.

Fig. 1. Simulatio
(2) At the grid computational resource node, the load balancing
factor gk of each resource is periodically collected and sent
to a cross-layer optimizer through the control channel.

(3) At the cross-layer optimizer, the user utility, taking into
account previously assigned jobs and current grid state
(received burst loss and load balancing factor), is calculated
for each resource. The TCP path and computational resource
with the maximal user utility are selected and assigned to
the scheduled job. The message is then sent to the corre-
sponding source node and computational resource node
through the control channel.

(4) At the grid source node, after receiving the allocated path,
TCP sender measures the round trip time Dk

s of this path
and updates its TCP window size Wk

s .
(5) At the grid computational resource node, once receiving the

message from the cross-layer optimizer, it updates its num-
ber of processors.

(6) Repeat the above steps for each job until the current time or
expense is beyond the deadline and budget limits.

3. Simulation results and performance analysis

Simulations are conducted on a centralized GoOBS platform to
compare the performance of JCCPA algorithm and DBC algorithm
under budget and deadline constraint. A description of the core
6×2.5G
4×2.5G

Core Node

Edge Node

User Host

Server Host

Tongji
Univ.udan

niv.

st China
&Technology
Univ.

Fudan Univ.
Med.Dept.

SJTU
Med. Dept.

n Topology.

50 100 150 200 250 300
30
40
50
60
70
80
90

100
110
120
130
140

U
se

r U
til

it
fo

r 2
0M

I

 JCCPA 1000MI
 DBC 1000MI

U
se

r U
til

ity
 fo

r 1
00

0M
I

Deadline (units of time)

100

200

300

400

500

600

700

800
 JCCPA 20MI
 DBC 20MI

Fig. 2. User utility is a function of the deadline.

50 100 150 200 250 300
5.00E+008

1.00E+009

1.50E+009

2.00E+009

2.50E+009

3.00E+009

3.50E+009 JCCPA1000MI
 DBC 1000MI
 JCCPA 20MI
 DBC 20MI

Th
ro

ug
hp

ut
 (b

ps
)

Deadline (units of time)

Fig. 3. The throughput is a function of the deadline.

Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920 8917
of DBC algorithm follows: (1) For each resource, calculate the next
completion time for an assigned job on the basis of taking into
50 100 150 200 250 300
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

Av
er

ag
e

O
ve

ra
ll

D
el

ay
 (u

ni
ts

 o
f t

im
e)

 fo
r 2

0M
I

 JCCPA 1000MI
 DBC 1000MI

Av
er

ag
e

O
ve

ra
ll

D
el

ay
 (u

ni
ts

 o
f t

im
e)

 fo
r 1

00
0M

I

Deadline (units of time)

0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52

JCCPA 20MI
DBC 20MI

50 100 150
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

Deadline

Av
er

ag
e

N
et

w
or

k
D

el
ay

 (u
ni

ts
 o

f t
im

e)

 JCCPA 1000MI
 DBC 1000MI
 JCCPA 20MI
 DBC 20MI

(a)

(c)

Fig. 4. Effect of deadline on the performance of: (a) average overall delay, (b)
account previously assigned jobs. (2) Sort resources by next com-
pletion time. (3) Assign job to the first resource for which the cost
is less than or equal to the budget limit. (4) Repeat all steps until all
jobs are assigned. The OBS based grid topology is shown in Fig. 1,
which is from Shanghai Education and Research Network (SHER-
NET). The details can be referred to Yang, Wu, Dai, and Chen
(2010). The characteristics of computational resources simulated
can be referred to Buyya et al. (2002).

Fig. 2 shows the user utility as a function of the deadline. Two
average required computational quantities for each application,
namely 20 MI (million instructions) and 1000 MI are adopted,
where 20 MI represent the case that computational time at server
is much shorter than data transmission delay while 1000 MI repre-
sent the case that computational time at server is much larger than
data transmission delay. As shown in Fig. 2, all user utilities in-
crease with the deadline since a larger deadline brings out more
successfully completed jobs. Furthermore, regardless of DBC or
JCCPA, the user utility for the average required computational
quantity of 20 MI is higher than that for the average required com-
putational quantity of 1000 MI. The reason is that a larger compu-
tational quantity results in the completion time quick to exceed
deadline constraint so that many job requests are refused. Under
these two required computational quantity, JCCPA is superior to
DBC, respectively. This is easily understood because JCCPA has
shorter average overall delay (see Fig. 4) that makes the job pro-
cessed and replied fast so that more job requests can be served.

Under the mentioned required computational quantities, JCCPA
achieves higher throughput than DBC illustrated in Fig. 3. This is
obvious because JCCPA completes more jobs than DBC. At the same
time, no matter what JCCPA algorithm or DBC algorithm is, the case
in average required computational quantity of 20 MI achieves
higher throughput than the case in average required computa-
tional quantity of 1000 MI. This is due to the fact that the former
provides higher user utility than the latter (see Fig. 2).
50 100 150 200 250 300
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

Av
er

ag
e

C
om

pu
ta

tio
na

l T
im

e
(u

ni
ts

 o
f t

im
e)

 fo
r 2

0M
I

Deadline (units of time)

Av
er

ag
e

C
om

pu
ta

tio
n

Ti
m

e
 (u

ni
ts

 o
f t

im
e)

 fo
r 1

00
0M

I

 JCCPA 1000MI
 DBC 1000MI

200 250 300

(units of time)

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14

JCCPA 1000MI
DBC 20MI

(b)

average processing time at remote servers and (c) average network delay.

500 1000 1500 2000 2500 3000
30

40

50

60

70

80

90

U
se

r
U

til
ity

 fo
r

20
M

I

 JCCPA 1000MI
 DBC 1000MI

U
se

r
U

til
ity

 fo
r

10
00

M
I

Budget (units of money)

200

300

400

500

600

700

800

900

JCCPA 20MI

DBC 20MI

500 1000 1500 2000 2500 3000
5.00E+008

1.00E+009

1.50E+009

2.00E+009

2.50E+009

3.00E+009

3.50E+009

4.00E+009

Budget (units of money)

T
hr

ou
gh

pu
t (

bp
s)

 JCCPA 1000MI
 DBC 1000MI
 JCCPA 20MI
 DBC 20MI

500 1000 1500 2000 2500 3000

0.00070
0.00075
0.00080
0.00085
0.00090
0.00095
0.00100
0.00105
0.00110
0.00115
0.00120
0.00125
0.00130
0.00135
0.00140

Budget (units of money)

B
ur

st
 L

os
s

R
at

io

 JCCPA 1000MI
 DBC 1000MI
 JCCPA 20MI
 DBC 20MI

(a) (b)

(c)

Fig. 5. Dependence of (a) user utility, (b) throughput and (c) burst loss ratio on the budget.

8918 Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920
Average overall delay is the average time needed to complete a
job from start time sending the request to the end time receiving
the processing results. It consists of average computational time
and average network delay, which is used to evaluate the perfor-
mance of GoOBS to a certain extent. Fig. 4 examines the effect of
deadline on the average overall delay, average processing time at
remote servers and average network delay. From the results in
Fig. 4(a), the average overall delay of JCCPA is shorter than that
of DBC since JCCPA chooses some suitable grid resources to trans-
mit and process jobs at server. In the case that average required
computational quantity is 1000 MI, the average network delay of
JCCPA is higher than that of DBC for large deadline as shown in
Fig. 4(c). This is reasonable because for the average required com-
putational quantity of 1000 MI, the bottleneck of GoOBS lies in
computational resource in this case and then the effect of conges-
tion control mechanism is less determinant. The average overall
delay in the case of 1000 MI is longer than that in the case of 20
MI. This reason is that a larger computational quantity has more
obvious effect on delay (see Fig. 4(b) and (c)).

The dependence of performance on budget is illustrated in
Fig. 5. When the budget is small, the user utility and throughput
are low. This is because user cannot afford expensive and efficient
resources to process jobs. As the budget increases, both user utility
and throughput grow since users can buy more expensive re-
sources to maximize user utility. JCCPA achieves higher throughput
than DBC because of more successfully completed jobs (see
Fig. 5(a)). In Fig. 5(c), all burst loss ratios decrease with the budget.
This can be explained as follows. Since the required grid resources
are not released in time, it makes a great number of jobs to be re-
fused in submission so that lots of burst losses mainly occur at the
beginning. Therefore, the traffic load that can be successfully sent
to OBS networks is not large and to some extent network status
is in balance. As the budget increases, the jobs that can be success-
fully completed also increase and then the burst loss ratio compar-
atively reduces.

In Fig. 6, we set the average required computational quantity to
be 100 MI. The budget is constrained to be 1000 units of money.
Average computational payment is the average charge taken to
execute a job at server. When the job load (namely the number
of job requests) is small, the user utility is high. This is easily
understood. There are sufficient resources to share in GoOBS
environment so that the scheduler can select some free or light-
load resources to transmit and process user jobs resulting in low
burst loss ratio and average computational payment. As job load
increases, the available resources become less and conflicts rapidly
increase, which induce the increasing of average computational
payment and burst loss ratio. Before the budget is reached, a large
number of job requests are refused and then the user utilities de-
crease. JCCPA has superior performance than DBC since it properly
allocates resources in terms of current GoOBS conditions. It is
noted that payment is mainly expended on computational re-
source. This is due to the fact that computational price per unit
time is much more than network bandwidth price per unit time.

Fig. 7 compares the user utility among JCCPA, processor alloca-
tion local optimization scheduling (PLOS) and congestion control
local optimization scheduling (CLOS). The user utility increases
with the increasing of deadline because longer time contributes
to the successful completion of more jobs. For the average required
computational quantity of 1000 MI, when the deadline is smaller
(for example less than 150), the user utility of PLOS is slightly bet-
ter than that of JCCPA. As the deadline increases, the latter is higher
than the former. The reason is that as far as the large computa-
tional quantity is concerned, the bottleneck of GoOBS consists in
computational resource and the impact of congestion control is

32 64 96 128 160 192

100

200

300

400

500

600

700
 JCCPA 100MI
 DBC 100MI

U
se

r U
til

ity

Job Load
32 64 96 128 160 192

0

2

4

6

8

10

Job Load

Av
er

ag
e

C
om

pu
ta

tio
na

l P
ay

m
en

t
 (u

ni
ts

 o
f m

on
ey

)

 JCCPA 100MI
 DBC 100MI

32 64 96 128 160 192

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Job Load

Bu
rs

t L
os

s
R

at
io

 JCCPA 100MI
 DBC 100MI

(a) (b)

(c)

Fig. 6. Dependence of (a) user utility, (b) burst loss ratio and (c) average overall delay on the job load.

50 100 150 200 250 300

30
40
50
60
70
80
90

100
110
120
130
140

U
se

r U
til

ity
 fo

r 1
00

0M
I

 JCCPA 1000MI
 PLOS 1000MI
 CLOS 1000MI

Deadline (units of time)

100

200

300

400

500

600

700

800

U
se

r U
til

ity
 fo

r 2
0M

I JCCPA 20MI
 PLOS 20MI
 CLOS 20MI

Fig. 7. Effect of deadline on the performance of user utility.

50 100 150 200 250 300

10

15

20

25

30

35

40

45 JCCPA 1000MI
 PLOS 1000MI
 CLOS 1000MI
 JCCPA 20MI
 PLOS 20MI
 CLOS 20MI

R
es

ou
rc

e
Lo

ad
 D

iff
er

en
ce

Deadline (units of time)

Fig. 8. Effect of deadline on the performance of resource load difference.

Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920 8919
not obvious. PLOS successfully completes more jobs by adopting
processor allocation policy. However, as the deadline increases,
more jobs are completed and the load is also increased so that
the effect of congestion control becomes important. JCCPA chooses
some servers with unblocked links that are beneficial to more job
requests served. CLOS only considers congestion control, thus it
provides the least user utility in the case of large computational
quantity. For the average required computational quantity of 20
MI, JCCPA and CLOS provide higher user utility than PLOS since
the bottleneck of GoOBS is determined by network resource.

Fig. 8 investigates the load balancing of GoOBS system. The bal-
anced load assignment across heterogeneous computing and net-
work infrastructure is critical for both grid resources availability
and user/application efficiency since the heavy load of some re-
source is easy to become the bottleneck of entire gird system
and affect the timely completion of all tasks (Simeonidou et al.,
2005). We use resource load difference (RLD) to measure the load
balancing degree of GoOBS system. In GoOBS environment, the
load balancing should take into account network RLD and other
grid resource (namely computational resource in this paper) RLD.
For the computational resource, we use ‘‘workload/processing
capacity’’ as resource load. Actually, the resource load is the time
spent by the computational resource to execute all jobs assigned
to it. The computational RLD is the sum of the difference between
the time spent on each computational resource and the average

8920 Y. Yang et al. / Expert Systems with Applications 38 (2011) 8913–8920
occupation time. For network resource, the burst loss ratio of TCP
path is seen as network load since it reflects the status of traffic
load in some sense. The network RLD is the sum of the difference
between the burst loss ratio of each OBS link and the average burst
loss ratio. RLD is the sum of computational RLD and network RLD,
i.e., RLD ¼

PM
j¼1jTj � Tavg j þ

PG
l¼1jpl � pavg j. The smaller the RLD va-

lue is, the better the system load balancing is. From the results in
Fig. 8, the load balancing in the case of average computational
quantity 20 MI is better than that in the case of average computa-
tional quantity 1000 MI. The reason is that RLD is the sum of net-
work RLD and computational RLD, where network RLD is reflected
by burst loss ratio while computational RLD is reflected by compu-
tational time and burst loss ratio is often less than computational
time. For average computational quantity of 1000 MI, when the
deadline is small, PLOS has better load balancing than JCCPA. When
the deadline is large, the latter is superior to the former. This is due
to the fact that the bottleneck of GoOBS lies in computational re-
source. PLOS can select some idle or light-loaded computational re-
source to process job so that the computational RLD is better and it
plays a decisive role in RLD. When the deadline increases, the load
increases and network congestion control has important effect.
JCCPA can properly allocate resource by fulfilling the coordination
of congestion control in conjunction with processor allocation.
CLOS that only considers congestion control achieves much worse
load balancing than JCCPA and PLOS. Because when the computa-
tional quantity is large, the network congestion control is less
important, furthermore, network RLD is less than computational
RLD. For average computational quantity of 20MI, JCCPA and CLOS
have better load balancing than PLOS. The reason is that the bottle-
neck of GoOBS is determined by network resource.

4. Conclusion

We present a joint congestion control and processor allocation
algorithm for task scheduling in grid over OBS networks. Parame-
ters from resource layer are abstracted and provided to a cross-
layer optimizer to maximize user’s utility function. Simulations
are carried out to evaluate the performance of the proposed algo-
rithm by comparing with the DBC, PLOS and CLOS algorithm,
respectively. Results show that the proposed algorithm can
dynamically adjust the resource information according to the feed-
back of GoOBS environment in order to improve the entire perfor-
mance, which is suitable for the dynamic, autonomous and
heterogeneous GoOBS. In the future, we will consider joining the
characteristic parameters of OBS networks, such as assembly delay
and data channels to study the cross-layer performance.
Acknowledgments

The paper is partially supported by National Science Foundation
of China (NSFC) (ID90704002 and 60877012), 863 Project
(ID2006AA01Z242 and 2007AA01Z275), Dawn Program for Excel-
lent Scholars by the Shanghai Municipal Education Commission,
and the Key Disciplinary Development Program of Shanghai (T0102).
References

Baker, M., Buyya, R., & Laforenza, D. (2002). Grids and grid technologies for wide-
area distributed computing. Software–Practice and Experience, 32(15),
1437–1466.

Brakmo, L. S., & Peterson, L. L. (1995). TCP Vegas: End to end congestion avoidance
on a global Internet. IEEE Journal on Selected Areas in Communications, 13(8),
1465–1480.

Buyya, R., Murshed, M., & Abramson, D. (2002). A deadline and budget constrained
cost-time optimization algorithm for scheduling task farming applications on
global grids. Computing Research Repository cs. DC/023020.

Chen, C. K., Kuo, H. H., Yan, J., & Liao, T. (2009). GA-based PID active queue
management control design for a class of TCP communication networks. Expert
Systems with Applications, 36(2), 1903–1913.

Dussa, K., Carlson, B., Dowdy, L., & Park, K. H. (1990). Dynamic partitioning in a
transputer environment. In Proceedings of ACM SIGMETRICS on measurement and
modeling of computer systems (pp. 203–213). Boulder, Colorado: Academic.

Feng, H., Song, G., Zheng, Y., & Xia, J. (2004). A deadline and budget constrained cost-
time optimization algorithm for scheduling dependent tasks in grid computing.
Grid Coop. Comput, 3033, 113–120.

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion
avoidance. IEEE/ACM Transaction on Networking, 1(4), 397–413.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid: Enabling
scalable virtual organization. International Journal of Supercomputer, 15(3),
200–222.

Ghosal, D., Serazzi, G., & Tripathi, S. K. (1991). The processor working set and its use
in scheduling multiprocessor systems. IEEE Transactions on Software Engineering,
17(5), 443–453.

Lee, J. K., Lee, J. H., & Sohn, S. Y. (2009). Designing a business model for the content
service of portable multimedia players. Expert Systems with Applications, 36(3),
6735–6739.

Low, S. H., Paganini, F., Wang, J., Adlakha, S. A., & Doyle, J. C. (2002). Dynamics of
TCP/RED and a scalable control. In Proceedings of IEEE INFOCOM (pp. 239–248).

Low, S. H., Paganini, F., & Doyle, J. C. (2002). Internet congestion control. IEEE Control
Systems Magazine, 22(1), 28–43.

Majumdar, S., Eager, D. L., & Bunt, R. B. (1991). Characterization of programs for
scheduling in multiprogrammed parallel systems. Performance Evaluation,
13(2), 109–130.

Mambretti, J., Weinberger, J., Chen, J., Bacon, E., Yeh, F., Lillethun, D., et al. (2003).
The photonic terastream: Enabling next generation applications through
intelligent optical networking at iGrid 2002. Journal of Future Generation
Computer Systems, 19(6), 897–908.

McCann, C., & Zahorjan, J. (1994). Processor allocation policies for message-passing
parallel computers. ACM SIGMETRICS Performance Evaluation Review, 22, 19–32.

Ohsaki, H., Murata, M., Suzuki, H., Ikeda, C., & Miyahara, H. (1995). Rate-based
congestion control for ATM networks. ACM SIGCOMM Computer Communication
Review, 25(2), 60–72.

Qiao, C., & Yoo, M. (1999). Optical burst switching (OBS) – A new paradigm for an
optical internet. Journal of High Speed Networks, 8(1), 69–84.

Shakkottai, S., Rappaport, T. S., & Karlsson, P. C. (2003). Cross-layer design for
wireless networks. IEEE Communications Magazine, 41(10), 74–80.

Simeonidou, D., Nejabati, R., Ciulli, N., Battestilli, L., Carrozzo, G., & Castoldi, P.
(2005). Grid optical burst switched networks (GOBS). Global Grid Forum, GHPN
Group, Information track draft.

Tseng, L. Y., Chin, Y. H., & Wang, S. C. (2009). A minimized makespan scheduler with
multiple factors for grid computing systems. Expert Systems with Applications,
36(8), 11118–11130.

Wang, S. Y. (2003). Using TCP congestion control to improve the performances of
optical burst switched networks. In Proceedings of IEEE ICC (pp. 1438–1442).
Anchorage, Alaska.

Yang, Y., Wu, G., Li, X., & Chen, J. (2009). Joint flow control and processor allocation
for task scheduling in grid over OBS networks. In Proceedings of 15th Asia-Pacific
conference on communications (pp. 511–514). Shanghai, China.

Yang, Y., Wu, G., Dai, W., & Chen, J. (2010). Multi-objective optimization based ant
colony optimization in grid over optical burst switching networks. Expert
Systems with Applications, 37(2), 1769–1775.

Yu, X., Qiao, C., & Liu, Y. (2004). TCP implementation and false time out detection in
OBS networks. In Proceedings of IEEE INFOCOM (pp. 774–784). Hong Kong.

Yu, K. M., & Zhou, J. (2010). Parallel TID-based frequent pattern mining algorithm on
a PC Cluster and grid computing system. Expert Systems with Applications, 37(3),
2486–2494.

	Joint congestion control and processor allocation for task scheduling in grid over OBS networks
	Introduction
	GoOBS task scheduling modeling and optimization solutions
	Fundamental
	Model and solutions

	Simulation results and performance analysis
	Conclusion
	Acknowledgments
	References

