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Abstract—Optical pulse compression reflectometry (OPCR) 

has been proposed to utilize the frequency modulation pulse-

compression technology so as to overcome the tradeoff between 

the spatial resolution and measurement range. In this paper we 

theoretically analyze and simulate the influence of phase noise on 

OPCR. The phase noise determining the coherent length of the 

light source is closely linked to the measurement range.  

Keywords—phase noise; coherent length; linear frequency 

modulation; spatial resolution; pulse width  

 

I.  INTRODUCTION  

 
It is well known that the spatial resolution of conventional 

optical time domain reflectometry (OTDR) is directly 
determined by the width of optical pulse although the 
measurement range can be long [1, 2]. In contrast, optical 
frequency domain reflectometry (OFDR) uses periodic linear 
frequency modulation light and the spatial resolution is decided 
by the frequency sweeping range of LFM [3, 4]. However, 
their measurement ranges are in tradeoff relation with the 
spatial resolution. Optical pulse compression reflectometry 
(OPCR) [5, 6] was inspired by the pulse-compression concept 
in radar [7]. It can break through the limitation of conventional 
OTDR and OFDR with simpler optical equipment. The proof-
of-concept experiment of the OPCR verified 47-cm spatial 
resolution of with 221 MHz frequency sweeping range and 2 

s pulse duration and 5.4 km measurement range which is 
beyond the source’s coherent length by 2.7 times [5]. Most 
recently, 15 cm spatial resolution with 1 GHz frequency 
sweeping range at the same measurement range was 
successfully achieved [6].  

In this paper, we theoretically analyze the working 
principle of OPCR and simulate the influence of phase noise on 
its measurement range. We verify that the measurement range 
is limited by the coherent length of the laser source. 
Additionally, theoretical and numerical analysis shows that 
time averaging process is a useful way to get a smooth 
backscattered curve with 100 km measurement range when the 
coherent length is set to be 2 km, 40 km, 100 km, and infinity. 

 

 

II. PRINCIPLE AND THEORY 

 

 
Fig. 1. Schematic configuration of OPCR based on pulse compression 
technology. DFB-LD: distributed feedback laser diode; SSBM: single 
sideband modulator; FUT: fiber under test. 

Figure 1 illustrates the schematic configuration of OPCR 
based on LFM pulse compression technology [6]. The optical 
source is split into two branches: one is modulated by a LFM 
pulse that is served as the detection light towards a long-length 
optical fiber under test (FUT); the other one is used as the local 
reference light. The backscattered light of the FUT is 
coherently detected with the local reference light. The electrical 
signal converted by a photodetector (PD) is I/Q demodulated 
and goes through a matched filter to obtain the backscattered 
curve. 

The output of light source with phase noise can be 
expressed by [8]: 

            exp 2LD cE t j f t j t                            (1) 

where
cf  is the center frequency of the output light and  t  

represents  its phase noise. Assume the phase change of 
distributed feedback laser diode (DFB-LD) is stochastic 
process with zero-mean so that the phase in different time t is 
statistically independent: 
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where v is the linewidth of the laser source that determines 
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time of the source [9]. Obviously, the phase noise differs in 

different distances. The way that we always assume the phase 

deviation to be a certain value so as to simulate the 

backscattered light will result in neglecting the influence of 

phase noise in different distances. 

More details of phase noise is obtained if we take the 

distance influence into consideration [5]: 
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where  1A t  is the amplitude function of the backscattered 

light and 
2A  is the amplitude function of the local light. 

      The signal after I/Q demodulation at a delay of τ turns to: 
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where  A   is defined as the normalized amplitude of 

different instants of time.  

     After the matched filtering process: 
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     According to the law of large numbers in statistics, we will 
get the expectation of random numbers when the average time 

N is large enough [9]. Consequently,  s t is expressed by: 
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where . represents expectation and  k t  denotes the k-th 

phase change. Thus it can be seen that the waveform distortion 
is correspondingly eliminated when the average time N is large 
enough the phase noise tends to be constant. 

 

III. SIMULATION 

 
 On the basis of Eq. (5), the curve of 100 km distance with a 
15 cm jumper connecting at the end of 100 km FUT is 
simulated when the coherent length is set to be  2 km, 40 km, 
100 km, and infinity, respectively. The attenuation slop is set as 
0.2 dB/km. Numerical simulations are shown in Figs. 2-5, 
respectively. It is noted that there is no any averaging process 
undertaken in the simulation although it is possibly effective to 
reduce the influence of the phase noise according to Eq. (6). 

In Figs. 2-5, the part (a) shows the original curve while the 
part (b) depicts its envelope so as to expect the measurement 
range. TABLE I summarizes the linear attenuation range and 
measurement range for different coherent lengths. The linear 
attenuation range is expected by the attenuation slope while the 
measurement range is estimated by the maximum measurable 
range. It is found that the linear attenuation range is less 
affected by the phase noise but the measurement range is, more 
affected by phase noise. The measurement range extends along 
with the extension of coherent length, but the increasing trend 
gradually decreases. The phase noise determining the coherent 
length of the light source is closely linked to the measurement 
range. This is because the accumulation of the phase noise 
becomes large along with the extension of coherent length, 
which results in the decreasing of measurement range.  

TABLE I. LINEAR ATTENUATION RANGE AND MEASUREMENT 
RANGE FOR DIFFERENT COHERENCE LENGTH 

Coherence 
Length(km) 

Linear Attenuation 
Range(km) 

Measurement  
Range(km)  

2 18.75 30 

40 40 80 

100 80 160 

Infinite Infinite Infinite 
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Fig. 2. Numerical simulation of OPCR trace under 2 km coherence 
length. (a) Original curve and (b) its envelope. 
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Fig. 3. Numerical simulation of OPCR trace under 40 km coherence 
length. (a) Original curve and (b) its envelope. 
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Fig. 4. Numerical simulation of OPCR trace under 100 km coherence 
length. (a) Original curve and (b) its envelope. 
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Fig. 5. Numerical simulation of OPCR trace under infinite coherence 
length. (a) Original curve and (b) its envelope.  

 

IV. CONCLUSION 

 
This study demonstrates that the influence of phase noise 

on the OPCR is closely linked to the coherence length of light 
source. Examples of the measurement length of 100 km for the 
coherent lengths of 2 km, 40 km, 100 km, and infinity are 
numerically simulated and compared. When the influence 
caused by phase noise exceed the fiber’s attenuation, the 
measurement range will be influenced accordingly. 
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